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Mitchell, Gordon S., and Stephen M. Johnson. Invited Review:
Neuroplasticity in respiratory motor control. J Appl Physiol 94: 358–374,
2003; 10.1152/japplphysiol.00523.2002.—Although recent evidence dem-
onstrates considerable neuroplasticity in the respiratory control system,
a comprehensive conceptual framework is lacking. Our goals in this
review are to define plasticity (and related neural properties) as it
pertains to respiratory control and to discuss potential sites, mecha-
nisms, and known categories of respiratory plasticity. Respiratory plas-
ticity is defined as a persistent change in the neural control system based
on prior experience. Plasticity may involve structural and/or functional
alterations (most commonly both) and can arise from multiple cellular/
synaptic mechanisms at different sites in the respiratory control system.
Respiratory neuroplasticity is critically dependent on the establishment
of necessary preconditions, the stimulus paradigm, the balance between
opposing modulatory systems, age, gender, and genetics. Respiratory
plasticity can be induced by hypoxia, hypercapnia, exercise, injury,
stress, and pharmacological interventions or conditioning and occurs
during development as well as in adults. Developmental plasticity is
induced by experiences (e.g., altered respiratory gases) during sensitive
developmental periods, thereby altering mature respiratory control. The
same experience later in life has little or no effect. In adults, neuromodu-
lation plays a prominent role in several forms of respiratory plasticity.
For example, serotonergic modulation is thought to initiate and/or main-
tain respiratory plasticity following intermittent hypoxia, repeated hy-
percapnic exercise, spinal sensory denervation, spinal cord injury, and at
least some conditioned reflexes. Considerable work is necessary before
we fully appreciate the biological significance of respiratory plasticity, its
underlying cellular/molecular and network mechanisms, and the poten-
tial to harness respiratory plasticity as a therapeutic tool.
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PLASTICITY IS A FUNDAMENTAL property of neural systems.
Although the neural system subserving respiratory
motor control has traditionally been regarded as fixed
and immutable, compelling evidence has accumulated
in recent years, demonstrating that the respiratory
control system exhibits impressive plasticity, just as in
other regions of the nervous system. Because of its
relatively brief history, studies of plasticity in respira-

tory motor control have suffered from the lack of a coher-
ent conceptual framework. The three goals of this review
are to introduce workable definitions of plasticity and
related neural properties as they pertain to respiratory
control, discuss potential sites and mechanisms of plas-
ticity in the respiratory control system, and categorize
known examples of respiratory plasticity.

This review is not intended to be an exhaustive
catalogue of all that is known concerning respiratory
neuroplasticity. Instead, we will emphasize conceptual
development and present possible mechanisms that
occur in other regions of the nervous system if inade-
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quate reports are available in the respiratory neurobi-
ology literature. In so doing, we hope that gaps in our
knowledge will become apparent, thereby guiding fu-
ture investigations.

Other reviews are available on selected aspects of
respiratory plasticity [e.g., developmental plasticity
(80, 133), respiratory “memories” (46), time-dependent
mechanisms of the hypoxic ventilatory response (8, 21,
60, 117, 166, 197), serotonergic modulation and plas-
ticity (157), plasticity in the exercise ventilatory re-
sponse (157, 236), and activity-dependent synaptic
plasticity (105, 193, 194)]. Comprehensive reviews fo-
cused on selected aspects of respiratory plasticity will
appear as a part of this Highlighted Topics series in the
Journal of Applied Physiology.

DEFINITIONS

Despite a growing appreciation of plasticity in the
neural control of breathing, a common language has
not been adopted. Thus the related concepts of modu-
lation and plasticity are defined below to provide work-
ing definitions used throughout this review. Modula-
tion and plasticity share common features, as well as
distinctions; they are not mutually exclusive. Indeed,
modulation (or metamodulation) may play a key role in
the initiation and/or maintenance of plasticity. The
concepts of modulation, metamodulation, plasticity,
and metaplasticity as they pertain to respiratory motor
control are represented in Fig. 1 and are defined below.

Modulation

Modulation (Fig. 1A) is a neurochemically induced
alteration in synaptic strength or cellular properties,
adjusting or even transforming neural network func-
tion (72, 113, 150). Modulation is typified by a rela-
tively short time scale (e.g., within experimental trial)
compared with plasticity and is reversed when the
neuromodulator is no longer present. One notable ex-
ample of modulation in respiratory motor control is
serotonergic modulation of respiratory neurons (for
reviews, see Refs. 19, 24, 157, 204).

Plasticity

Plasticity (Fig. 1B) is a persistent change in the
neural control system (morphology and/or function)
based on prior experience. Relevant experiences in-
clude neural activity, hypoxia, injury, disease, or aging.
This simple, functional definition is similar to the
working definition used by the Society for Neuro-
science (218). Phrenic long-term facilitation (LTF) fol-
lowing intermittent hypoxia qualifies as an example of
plasticity in respiratory motor control because it re-
flects an enhanced respiratory motor output that out-
lasts the stimulus (episodic hypoxia) (166).

Metamodulation

Metamodulation (Fig. 1C) describes a situation
where neuromodulation is in itself subject to modula-
tion (113). Although metamodulation may share mech-

anisms with first-order modulation, it also involves
mechanisms that are unique, for example controlling
the elements involved in first-order modulation by
phosphorylation (e.g., control of reuptake transport
protein activity) or gene expression (e.g., receptor in-
duction). Serotonergic metamodulation appears to un-
derlie potentially important forms of plasticity in re-
spiratory motor control (4, 120, 131).

Metaplasticity

Metaplasticity (Fig. 1D) is a change in the capacity
to express plasticity based on prior experience (i.e.,
“plastic plasticity;” Ref. 29). Metaplasticity is a high-
er-order form of plasticity that has only recently
been described in other neural systems (1, 2, 29,
116). Metaplasticity exists in respiratory motor con-
trol since, for example, phrenic LTF is enhanced

Fig. 1. Representations of modulation and plasticity in respiratory
motor control. Tracings represent hypothetical integrated activity in
respiratory nerves before, during, and after physiological or experi-
mental perturbations (depicted as horizontal black and gray bars
below the tracings). A: facilitatory modulation is illustrated as an
enhanced respiratory motor output when the neuromodulator is
active (black bars). When the neuromodulator is withdrawn, respi-
ratory activity returns quickly to normal levels. B: plasticity is a
persistent increase in respiratory motor output that outlasts the
initiating stimulus (black bar). Thus plasticity is a change in future
system behavior based on experience. C: metamodulation occurs
when the response to a neuromodulator (black bar) is amplified in
different experimental condition (gray bar). However, respiratory
output still returns rapidly to normal levels when the primary
neuromodulator is removed. D: metaplasticity is enhanced plasticity
following the same initiating stimulus (black bar) due to a precon-
ditioning or continuing stimulus (gray bar). Metaplasticity can occur,
even if the preconditioning stimulus has no direct effect on respira-
tory behavior. Although this figure illustrates facilitatory processes,
each process can also result in inhibition.
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following chronic intermittent hypoxia (131) or cer-
vical dorsal rhizotomy (120). In these examples,
the experience (chronic intermittent hypoxia or sen-
sory denervation) alters another form of plasticity
(LTF).

Such inclusive, functional definitions make distinc-
tions between these processes somewhat arbitrary. If
modulation continues beyond the duration of an exper-
imental perturbation, it becomes a form of plasticity.
Similarly, an experience may directly influence behav-
ior (plasticity) and modify the system capacity to ex-
hibit plasticity in response to a subsequent perturba-
tion (metaplasticity).

SIGNIFICANCE OF PLASTICITY IN RESPIRATORY
MOTOR CONTROL

The fundamental significance of breathing is obvi-
ous: it is necessary for life. Breathing must be rigor-
ously controlled in accordance with ever-changing life
circumstances. For example, the (seemingly) simple
act of walking increases metabolic oxygen consumption
and carbon dioxide production by two- to fivefold rela-
tive to quiet, resting conditions. Breathing must be
rapidly adjusted in accordance with these changing
metabolic demands; otherwise, arterial blood-gas lev-
els will be severely disrupted, thereby limiting physical
activity. Other common short-term perturbations
accommodated by the respiratory control system in-
clude changes in arousal state, vocalization, postural
changes, airway protective reflexes, the beginning of a
respiratory infection, and changing environmental con-
ditions (e.g., ascent to altitude). On longer time scales,
the normal development of lung and chest wall me-
chanics, a gain or loss of weight, chronic altitude expo-
sure, and pregnancy all require substantial changes in
respiratory motor output if adequate ventilation is to
be maintained. Plasticity is beneficial in adapting re-
spiratory motor control to longer lasting or frequent
perturbations (167, 193).

By studying respiratory plasticity, we may gain in-
sights into mechanisms that guide normal develop-
ment of the respiratory control system and that enable
flexibility throughout life when confronted with chang-
ing circumstances. Furthermore, an understanding of
respiratory plasticity may yield insights into patholog-
ical states, thereby providing the rationale for thera-
peutic intervention in cases of respiratory insufficiency
(chronic lung disease, sudden infant death syndrome,
sleep-disordered breathing, congenital alveolar hy-
poventilation syndrome, and neuromuscular injury).
Insights derived from studies on respiratory plasticity
may also provide unique models, relevant to other
neural systems.

POTENTIAL SITES OF RESPIRATORY
NEUROPLASTICITY

Long-term functional and morphological changes in
cellular and synaptic properties that underlie respira-
tory plasticity may be distributed throughout the re-
spiratory control system. Fortunately, our understand-

ing of the locations and functions of the main
components of the mammalian respiratory control sys-
tem has advanced considerably in the past few decades
(49, 200, 203, 206). Furthermore, respiratory motor
output is well characterized and can be readily quan-
tified, even under in vitro conditions. To frame our
discussion, fundamental processes that underlie respi-
ratory control (49) are illustrated in Fig. 2.

Rhythm Generation

Rhythm generation arises in medullary neurons that
initiate rhythmic inspiratory and expiratory activity.
Several studies suggest that the pre-Bötzinger com-
plex, a discrete group of propriobulbar neurons in the
ventrolateral medulla, plays a critical role in respira-
tory rhythm generation (201, 203, 217), although this
hypothesis is not without controversy (223–225). In
awake, unrestrained adult rats, pre-Bötzinger neurons
are necessary for normal breathing rhythm (81).

Pattern Formation

Pattern formation establishes the detailed spatio-
temporal motor output to respiratory muscles, coordi-
nating their activation to produce a breath with appro-
priate characteristics for the prevailing conditions (49,
50). Pattern-forming neurons include premotoneurons
and motoneurons in the brain stem or spinal cord, with
complex activation patterns arising from the interac-
tions of their intrinsic properties with synaptic inputs.

Neuromodulatory Neurons

Neuromodulatory neurons project to and release
neuroactive substances (e.g., monoamines, peptides,

Fig. 2. Potential sites of plasticity in respiratory motor control.
Respiratory rhythm is generated by neurons in the ventral medulla
(rhythm generation) and transmitted to brain stem and spinal cord
neurons that shape the detailed spatiotemporal pattern of respira-
tory motor output (pattern formation). Rhythm generation and pat-
tern formation are continually influenced by sensory receptors (i.e.,
chemoreceptors and mechanoreceptors) and neuromodulatory sys-
tems (e.g., monoamines). Other inputs also influence the respiratory
control system such as inputs from the cortex or the direct effects of
oxygen, carbon dioxide, and pH on respiratory neurons (green ar-
rows). Plasticity may occur in one or multiple sites, and it is often
initiated by sensory or neuromodulatory influences.
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trophic proteins and so forth) that alter the synaptic
and cellular properties of other respiratory-related
neurons. Neuromodulators may promote plasticity in
their targets by enabling (i.e., necessary preconditions)
or initiating the cellular/synaptic events that lead to
plasticity. On the other hand, the capacity for neuro-
modulation may be altered, representing a novel and
potentially important form of plasticity (plasticity via
metamodulation; Ref. 113). Neuromodulatory systems
that appear to play key roles in certain forms of adult
respiratory plasticity include the serotonergic, norad-
renergic, and dopaminergic systems.

Sensory Neurons

Sensory neurons in the lungs, muscles, blood vessels,
and central nervous system send important chemosen-
sory (oxygen, carbon dioxide, pH) and mechanosensory
information to brain stem respiratory neurons. Thus
sensory receptors provide negative feedback, adjusting
breathing to meet changing conditions. Less widely
appreciated functions of sensory receptors in respira-
tory control include their effects on neuromodulatory
systems (101, 157), on cortical areas associated with
arousal and respiratory sensation (13, 99), and their
actions as guides to respiratory plasticity (166, 167, 193).

Plasticity may arise from changes in the central
neuroanatomic sites associated with respiratory con-
trol or from changes in peripheral sensory receptors.
For example, chronic, sustained hypoxia elicits plastic-
ity in the carotid body chemoreceptors (21), with de-
layed effects on the central neural integration of ca-
rotid chemoafferent neurons that become more
prominent as the duration of hypoxia is extended (45,
197). Chronic intermittent hypoxia elicits plasticity via
central neural mechanisms (131) with additional ef-
fects at the carotid body chemoreceptors (198). In each
example of respiratory plasticity, it is essential to eval-
uate changes in both peripheral and central neural
sites, as well as the possibility that multiple central
sites are involved.

POTENTIAL MECHANISMS OF RESPIRATORY
PLASTICITY

Detailed cellular or synaptic mechanisms are not yet
known in any model of respiratory plasticity. Because
basic mechanisms known to operate in other regions of
the nervous system most likely contribute to respira-
tory neuroplasticity, they will be outlined briefly in this
review (see Figs. 3 and 4). Cellular and/or synaptic
mechanisms of plasticity may operate alone or in con-
cert, in parallel, or in sequence to establish plasticity in
respiratory control.

Changes in Synaptic Strength

Changes in synaptic strength are shown in Fig. 3A.
Activity-dependent synaptic plasticity. Activity-de-

pendent synaptic plasticity is a change in the efficacy of
synaptic transmission due to previous activity at that
synapse. In many regions of the central nervous sys-

tem, high-frequency activity enhances synaptic trans-
mission for hours to days, a phenomenon known as
long-term potentiation (LTP) (8, 48, 115, 145). In con-
trast, low-frequency activity may decrease synaptic
strength for minutes to hours, an effect known as
long-term depression (LTD) (42, 114). Shorter forms of
potentiation and depression are also observed after
synaptic activation (53, 144, 251). The specific mani-
festations of activity-dependent synaptic plasticity of-
ten depend on the recent history of synaptic activation
(i.e., metaplasticity; Refs. 1 and 2) or the presence of
neuromodulators (69, 111, 159). Thus synaptic activity
within the respiratory control system may induce ac-
tivity-dependent synaptic plasticity, although the ex-

Fig. 3. Potential cellular and/or synaptic mechanisms of respiratory
plasticity. In each panel, plasticity is specified by the red color. A:
synaptic plasticity may be initiated by neuromodulators (neuro-
modulator-induced plasticity), which activate intracellular signaling
molecules (red), secondarily altering the strength of other (glutama-
tergic or GABAergic) synaptic inputs. Activity-dependent plasticity
may arise from coincident pre- and postsynaptic activity, thereby
altering presynaptic transmitter release or postsynaptic receptor
function in a manner similar to hippocampal long-term potentiation
and long-term depression. Silent synapses (anatomically present but
functionally ineffective) may be revealed by neuromodulator or ac-
tivity-dependent mechanisms. B: morphological changes may under-
lie functional respiratory plasticity. The structure/function of neuro-
modulatory systems may change, increasing or decreasing the
capacity for neuromodulation. Neuron properties may change, such
as size and shape of the dendrites or somata, and the density of
dendritic spines. Finally, new synapses may be formed or pruned.
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tent and direction of such plasticity may be critically
dependent on the synapse and prevailing conditions.

Neuromodulator-induced synaptic plasticity. A clas-
sical model of synaptic plasticity is facilitation of the
sensorimotor synapse in Aplysia (30, 109, 154, 155,
227). In this model system, serotonin release onto the
presynaptic terminal initiates intracellular cascades,
increasing synaptic strength in multiple time domains.
Serotonin-dependent plasticity is also important in re-
spiratory motor control (Ref. 166; see Serotonin-Depen-
dent Respiratory Plasticity below), although the de-
tailed cellular and/or synaptic mechanisms may differ.
Other neurochemicals such as norepinephrine (8, 117)
or trophic factors such as brain-derived neurotrophic
factor (BDNF) may initiate or regulate synaptic plas-
ticity (124, 147, 191, 214, 231).

Silent synapses revealed. In some neural systems,
nonfunctional synaptic pathways exist. These existing
but ineffective synaptic pathways can be enhanced by
experimental manipulations or injury (48, 71, 128, 129,
190, 247). In respiratory motor control, ineffective
crossed spinal synaptic pathways to phrenic motoneu-
rons are revealed by serotonin receptor activation (130,
248), spinal injury (74, 86, 181), and spinal sensory
denervation (63). Plasticity in silent synaptic pathways
may be a specialized case of activity-dependent or
neuromodulator-induced synaptic enhancement; how-
ever, pending further investigation, this must be re-
garded as a separate category of synaptic plasticity.

Changes in Neuromodulatory Systems

Changes in neuromodulatory systems are shown in
Fig. 3B. Breathing is under the influence of multiple
excitatory and inhibitory neuromodulatory systems,
each active under different physiological circum-
stances and each with the potential to exhibit plastic-
ity. Altered concentrations of neuromodulators near
their targets may result from changes in the activity of
neuromodulatory neurons, the number and size of neu-
romodulatory terminals, reuptake of neuromodulator
once released, or synthesis and degradation. The func-
tion of any neuromodulatory system also depends on
the density and type of receptors on their pre- and
postsynaptic targets, as well as their intracellular sig-
naling mechanisms. An altered capacity for neuro-
modulation resulting from changes in any of these
factors is both a form of plasticity and a form of meta-
modulation. Notable examples of plasticity via meta-
modulation include serotonin-dependent plasticity in
the social status of crayfish (244), altered serotonin
transport protein function (174), altered serotonin deg-
radation (25, 28), and alterations in serotonin-depen-
dent respiratory plasticity following chronic spinal sen-
sory denervation (63, 106, 120).

Changes in Neuron Properties

Changes in neuron properties are illustrated in Fig.
3B. Neurons can alter their functional characteristics
by morphological plasticity, changing the size and
shape of their somata and dendrites or dendritic spine

characteristics (33, 91, 180, 222). Electrophysiologi-
cally, neurons can alter their membrane potential,
input resistance, capacitance, and action potential
threshold (and so forth) by changing the expression or
distribution of membrane channels or postsynaptic re-
ceptors (84, 110, 139, 250).

Growth of New Synapses

Growth of new synapses is illustrated in Fig. 3B. The
strength of excitatory and inhibitory synapses may be
increased by the formation of new synaptic connections
between existing neurons, especially during the early
stages of development. Increased synaptic connectivity
may result from the arrival of new growth cones or to
sprouting of existing nerve terminals (33, 43, 55, 120,
136, 146). The growth of new synapses may be trig-
gered by synaptic activation, by deafferentation, and/or
by increased expression of neurotrophic factors. Syn-
aptic pruning may also be an important mechanism of
plasticity during development or after therapeutic tis-
sue transplants, such as the implantation of stem cells
(188, 230).

Modulatory Balance

Modulatory balance is illustrated in Fig. 4. Another
example of changes in modulatory systems is the cir-
cumstance where opposing modulatory systems exist
in a balance (Fig. 4A). By shifting the balance of facili-

Fig. 4. Plasticity via changes in network or synaptic balance. A:
modulatory balance results from the off-setting influences of facili-
tatory and inhibitory neuromodulatory systems, resulting in normal
respiratory motor output. This balance can be disrupted by strength-
ening the influence of one modulatory system or weakening the
other. Respiratory plasticity may result from changes in this bal-
ance, reflecting a net inhibition or facilitation. On the other hand,
modulatory influences may be regulated in parallel, maintaining a
balance at a different level. In this way, facilitatory plasticity may be
used to offset maladaptive inhibitory mechanisms. B: synaptic bal-
ance may be represented by offsetting influences from postsynaptic
kinases (facilitatory) and phosphatases (inhibitory) on synaptic
strength. The net activation of phosphatases and kinases will thus
determine the overall synaptic strength.

362 INVITED REVIEW

J Appl Physiol • VOL 94 • JANUARY 2003 • www.jap.org

 by 10.220.33.3 on Septem
ber 20, 2017

http://jap.physiology.org/
D

ow
nloaded from

 

http://jap.physiology.org/


tatory and inhibitory modulatory systems, the overall
neural network may be shifted to net facilitation or net
inhibition. Shifts in modulatory balance have been
suggested as a possible explanation for differential
responses of the respiratory control system to episodic
hypoxia vs. hypercapnia, invoking an imbalance be-
tween the opposing influences of the serotonergic and
noradrenergic modulatory systems (8, 117).

By analogy, changes in synaptic strength may arise
from a balance between the facilitatory influences of
pre- and postsynaptic kinases and phosphatases (Fig.
4B). For example, the difference between LTD and LTP
in hippocampal synapses is postulated to arise from a
predominant action of phosphatases at low stimulation
frequencies and of kinases at higher stimulation fre-
quencies, the degree of depression or potentiation aris-
ing from the net phosphorylation state (98, 219, 234).

Changes in Neural Network Dynamics

In addition to changes in cellular and/or synaptic
properties, it is important to consider emergent prop-
erties that arise in the neural network subserving
ventilatory control. Emergent properties may repre-
sent novel mechanisms of plasticity, not easily detected
at the cellular and/or synaptic level. For example, after
a stimulus that elicits plasticity (e.g., carotid chemoaf-
ferent neuron activation), brain stem respiratory neu-
rons exhibit greater synchronization (vs. changes in
mean firing rate) (171–173). Although the significance
of greater synchronization is not clear, synchronized
synaptic inputs may trigger a greater postsynaptic
response than the same number of synaptic potentials
presented in a constant temporal pattern (186).

FACTORS THAT INITIATE AND MAINTAIN PLASTICITY

Factors that initiate and maintain plasticity are il-
lustrated in Fig. 5. In many models of neuroplasticity,
factors that initiate plasticity are often distinct from
the factors that maintain it. Maintenance often results

from a cascade of cellular and/or synaptic mechanisms
operating in different time domains (Fig. 5). Common
factors initiating plasticity include neuronal activity
(with associated calcium influx), neuromodulators, in-
jury, hypoxia/ischemia, and unique associations be-
tween coincident or temporally associated neural ac-
tivity (e.g., during associative learning). Increased
intracellular calcium activates calcium-dependent ki-
nases or phosphatases, thereby triggering a signaling
cascade resulting in short-term and long-term plastic-
ity (110, 250). In short time domains, activated kinases
may covalently modify existing proteins (i.e., phos-
phorylation), giving rise to enhanced synaptic trans-
mission. However, more robust stimuli may trigger
new protein synthesis (or delay protein breakdown),
leading to longer lasting plasticity. New protein syn-
thesis may arise from increased translation of existing
mRNA (intermediate-term plasticity) or increased
transcriptional activity (long-term plasticity) (110).
New proteins may include kinases, neurotrophic fac-
tors, scaffolding proteins, transcription factors, and
structural proteins such as adhesion molecules.

CONSIDERATIONS

Respiratory Motor Output Is Spontaneous
and Interpretable

One of the greatest difficulties in studying plasticity
in other parts of the nervous system (e.g., the hip-
pocampus) is interpreting the physiological signifi-
cance of the plasticity (31, 109, 156, 212). For example,
in hippocampal slices, the significance of a long-term
increase or decrease in synaptic strength is difficult to
interpret because learning and memory cannot be mea-
sured. Conversely, in intact animals, there is debate as
to whether changes in behavior can be attributed to
learning and memory. In contrast, respiration is a
spontaneous, endogenous rhythmic motor behavior
that can be described in considerable quantitative de-
tail. Thus, following an experimental protocol designed
to induce plasticity, long-term changes in the ampli-
tude or timing of respiratory motor output can be
measured, and the physiological relevance of these
changes can be interpreted in the context of breathing.

Necessary Preconditions Must Be Satisfied

Certain forms of plasticity would not be optimal in
the normal, day-to-day operation of the respiratory
control system. For example, it is not desirable for a
sigh or deep breath to initiate activity-dependent plas-
ticity in the bulbospinal synapse onto phrenic mo-
toneurons. If this synapse were to undergo LTP after a
sigh, the persistent increase in respiratory motor out-
put would cause persistent hyperventilation, disrupt-
ing blood-gas homeostasis. On the other hand, plastic-
ity may be critical to maintain function in the face of
injury or the onset of lung disease. The key to main-
taining the capacity for plasticity, while preventing
inappropriate expressions of plasticity, may be through
the regulation of factors that play a permissive role in

Fig. 5. Hypothetical basis of cellular/molecular mechanisms that
give rise to different time domains of respiratory plasticity. Many
forms of plasticity are initiated when selected kinases are activated
by neurotransmitter or neuromodulator receptors (NT-R). Short-
term plasticity may arise from the direct, covalent modification
(phosphorylation) of pre- and/or postsynaptic channels and recep-
tors. Intermediate-term plasticity often requires new protein synthe-
sis, most likely via increased translation of existing mRNA. Long-
term plasticity is more likely to be associated with transcription-
dependent protein synthesis. Time-dependent changes in synaptic
strength alter respiratory behavior.
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plasticity (i.e., necessary preconditions). For example,
although there is little evidence for potentiation of
synapses on spinal respiratory motoneurons under
normal conditions, spinal injury strengthens existing
but ineffective synaptic pathways to phrenic motoneu-
rons (63, 65, 74, 181, 248). Thus spinal injury may
establish necessary preconditions for functional synap-
tic enhancement.

Necessary preconditions might include adequate lev-
els of neurotrophic factors, neuromodulators, neuro-
transmitters, or intracellular signaling molecules. Sev-
eral neurochemicals are necessary for the expression of
activity-dependent LTP in the mammalian hippocam-
pus, including BDNF. BDNF is ordinarily expressed at
high levels in the hippocampus, where LTP can be
evoked with relatively little difficulty. LTP is difficult
to evoke in BDNF knockout mice, unless hippocampal
BDNF protein levels are replenished experimentally
(123, 187). In contrast, BDNF concentrations are rela-
tively low in the mammalian spinal cord (75, 106), and
activity-dependent LTP is difficult to evoke (105, 158).
An upregulation of spinal BDNF (104) might improve
the ability to express spinal synaptic plasticity. As
another example, protein kinase A (PKA) is necessary
for BDNF-induced potentiation at the neuromuscular
synapse; however, PKA is not sufficient to initiate the
plasticity when acting alone (26).

The Stimulus Paradigm Is a Key Determinant
of Plasticity

In many models of neuroplasticity, the specific stim-
ulus paradigm is critical (97, 155, 170). Important
variables include the duration, intensity, pattern, and
history of stimulation. The duration and intensity of
stimulation often determine the duration and direction
(potentiation vs. depression) of the resulting plasticity
(36, 168). Important forms of synaptic plasticity are
elicited preferentially by intermittent vs. sustained
stimuli. For example, in Aplysia, serotonin-dependent
LTF (154, 155) and sustained PKA activation (227) are
elicited by episodic serotonin exposures but not by
serotonin exposures of equal total duration when ap-
plied in a “massed” or continuous pattern. Hippocam-
pal LTP is most effectively induced by repeated teta-
nization (97). Similarly, the stability of mitogen-
activated protein kinase activation (a key molecule in
several forms of plasticity) is increased when stimuli
are presented in an episodic pattern, an effect neces-
sary for dendritic plasticity in cultured hippocampal
neurons (243).

The basis of this profound pattern sensitivity is not
clear, yet it may result from unique cellular properties
elicited by cytosolic calcium oscillations. Some calcium-
sensitive kinases become autophosphorylated after a
series of rapid calcium spikes and, therefore, do not
deactivate as rapidly between oscillations (199). Cal-
cium oscillations reduce the effective threshold for
transcription factor activation and thus gene expres-
sion (27, 44, 52, 160). For example, BDNF, a neurotro-
phic factor implicated in many forms of neural plastic-

ity, exhibits pattern-sensitive, activity-dependent
synthesis (166), and release (11, 125), at least in some
types of neurons.

The observation that episodic but not sustained hyp-
oxia elicits serotonin-dependent phrenic LTF (9) may
not represent a ubiquitous characteristic of the respi-
ratory control system. To the contrary, continuous, but
not intermittent hypoxia elicits CREB phosphorylation
in carotid body glomus cells (241). The specific pattern
of stimulation necessary to evoke plasticity in any
neural structure is likely to depend on the details of
cell signaling pathways available in those neurons.

The history of stimulation can also be a critical
determinant of plasticity. For example, brief synaptic
activation in the hippocampal CA1 region at low fre-
quencies that cause neither LTP nor LTD alters future
responses to stimulation: protocols that ordinarily
cause LTP now elicit LTD (1, 2). Thus metaplasticity is
a potentially confounding influence of relevance to the
design and interpretation in any study of plasticity.
One example of metaplasticity in respiratory control is
the progressive decrease in posthypoxia frequency de-
cline with successive hypoxic exposures in anesthe-
tized rats (4).

Facilitatory and Inhibitory Balance

Several facilitatory and inhibitory modulatory pro-
cesses influence breathing (19, 24, 157). Some of these
apparently opposing processes act in a similar time
frame, establishing a balance that offsets inappropri-
ate influences on respiratory motor output. Indeed, the
major biological role of facilitatory plasticity (e.g., LTF
after episodic hypoxia) may be to offset inhibitory
mechanisms, thereby preserving adequate ventilation.
Before conclusions are made that specific forms of
respiratory plasticity do not occur in a specific model or
experimental circumstance, full consideration should
be given to the possibility that the mechanism has been
invoked but is not detectable in ventilation due to a
concurrent offsetting mechanism (8, 117).

Changes in Mechanics or Gas Exchange Must Not Be
Confused for Neuroplasticity

Experiences may alter respiratory mechanics or gas
exchange, thereby altering ventilation but obscuring
the underlying change in (neural) respiratory motor
output. For example, neonatal hypoxia causes persis-
tent changes in respiratory mechanics, diminishing
future hypoxic ventilatory responses (182–184), but
without changing integrated neural responses to hyp-
oxia as assessed in the phrenic neurogram (17). Thus,
although neonatal hypoxia elicits developmental plas-
ticity, it may not reflect neuroplasticity. Similarly, de-
velopmental hyperoxia alters pulmonary gas exchange
during hypoxia (132). Thus the same inspired oxygen
fraction cannot be used to test future hypoxic ventila-
tory responses because differential effects on arterial
oxygen levels elicit hypoxic ventilatory responses that
are not comparable. Only with comparable arterial
oxygen levels (by adjusting the inspired oxygen frac-
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tion in treated rats) can the underlying neuroplasticity
be assessed (132, 135). Any study on respiratory neu-
roplasticity must consider the confounding influences
of changes in respiratory mechanics and gas exchange.

Genotype Can Influence Plasticity

Genotype can influence hippocampal synaptic plas-
ticity (148, 153). Substantial anatomic differences in
important neuromodulatory systems have also been
reported between rat substrains (37). Evidence is also
accumulating that genotype can influence respiratory
plasticity. For example, experiments on Sprague-Daw-
ley rats from different colonies (60, 61) revealed that
phrenic and hypoglossal LTF after intermittent hyp-
oxia differ substantially between rat substrains. Mu-
tations in selected genes can also influence respiratory
plasticity (112, 121, 122). Any study of respiratory
neuroplasticity must consider potential genetic influ-
ences.

Age and Gender Influence Plasticity

Age and gender can exert powerful influences on
hippocampal synaptic plasticity (38, 56, 88, 140). Age
affects a number of ventilatory control mechanisms
(58, 59), including the magnitudes of phrenic and hy-
poglossal LTF after intermittent hypoxia. Specifically,
LTF decreases from young adult to middle-aged male
rats (245). In contrast, LTF actually increases with age
in female rats and is dependent on the stage of the
estrus cycle (246). Thus age and gender can be impor-
tant influences on respiratory plasticity.

Respiratory Gases Influence Plasticity

Hypercapnia and hypocapnia have detrimental ef-
fects on memory, cognition, and motor tasks in humans
and other animals (73, 149, 161, 213). Adverse effects
of hypercapnia are reflected as impaired hippocampal
LTP (96, 100, 238). On the other hand, synaptic acti-
vation in the hippocampus induces transient alkalin-
ization of the extracellular fluid, indirectly enhancing
N-methyl-D-aspartate (NMDA) receptor-mediated syn-
aptic transmission and LTP (78, 79, 235).

Hypoxia and ischemia also impair brain function in
humans and other animals (35, 93, 239). Interactions
between hypoxia, synaptic transmission, and synaptic
plasticity in the hippocampus are complex and poorly
understood. For example, 1) hypoxia induces a form of
LTP distinct from activity-dependent LTP (41, 94,
141), 2) decreased oxygen tension impairs activity-
dependent LTP (95), and yet 3) pretreatment with
moderate hypoxia enhances hippocampal LTP (210).

In a closed-loop homeostatic control system with
chemoreceptor feedback, changes in the level of arte-
rial PCO2 are also important considerations in studies
of respiratory plasticity. For example, an increase in
respiratory drive will decrease arterial PCO2, thereby
attenuating and obscuring the overall ventilatory re-
sponse. Thus a small ventilatory facilitation of 20–30%
may actually reflect a 70–100% increase in respiratory
drive. Similarly, a decrease in arterial PCO2 during

ventilatory stimulation may cause ventilatory depres-
sion during the poststimulation period. Such a depres-
sion may reflect persistent hypocapnic inhibition vs.
neuroplasticity per se.

At the very least, the effects of altered oxygen or
carbon dioxide levels on synaptic plasticity suggest
that one must pay careful attention to gas levels when
performing in vivo or in vitro experiments on any form
of plasticity. Indeed, appropriate levels of oxygen, car-
bon dioxide, and pH may represent necessary precon-
ditions for the expression of plasticity. Conversely,
certain forms of respiratory plasticity may result di-
rectly from altered oxygen or carbon dioxide levels
acting on respiratory neurons.

MODELS OF RESPIRATORY PLASTICITY

Known categories of respiratory plasticity will be
mentioned, although the discussion will be brief. Sev-
eral of these categories are the topics of other reviews
in this series or were topics of previous reviews in the
Journal of Applied Physiology (80, 166, 178, 198).

Hypoxia-Induced Respiratory Plasticity (Adult)

Hypoxia-induced respiratory plasticity is the most
thoroughly studied and best understood form of respi-
ratory plasticity. The hypoxic ventilatory response is
characterized by discreet, time-dependent mechanisms
that depend on the severity, duration, and pattern of
hypoxic exposure. Recent reviews have characterized
these time domains of the hypoxic ventilatory response
(21, 166, 197, 198). In brief, continuous hypoxia is
characterized by an acute response, followed immedi-
ately by short-term potentiation and then short-term
depression (46, 197). In the subsequent minutes to
days of hypoxic exposure, ventilatory activity exhibits
hypoxic ventilatory decline, followed by ventilatory ac-
climatization to chronic hypoxia. Ventilatory acclima-
tization appears to be dominated by initial, peripheral
chemoreceptor sensitization (21), followed by progres-
sively increasing contributions from the central neural
integration of carotid chemoafferent neurons (45, 220).
Thus the ventilatory response to continuous hypoxia is
characterized by several unique forms of respiratory
plasticity.

After a single hypoxic episode, a short-term depres-
sion of phrenic motor output is observed in anes-
thetized rats (39, 89), an effect now referred to as
posthypoxia frequency decline (39, 197). Posthypoxia
frequency decline is abolished by pontine lesions in the
vicinity of the A5 region and is modulated by !2-
adrenergic (Ref. 4, but see Ref. 40) and serotonin re-
ceptor activation (119). Posthypoxia frequency decline
in rats is subject to a degree of metaplasticity, since
prior exposures diminish its expression after subse-
quent hypoxic exposures (4).

When hypoxia is experienced in an intermittent or
episodic pattern, unique forms of plasticity are re-
vealed (9, 166, 198). In normoxic intervals between
successive hypoxic episodes, a progressive windup of
respiratory activity is often observed, reflecting the
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development of LTF (162, 197). After 3–10 hypoxic
episodes, LTF is expressed as a persistent elevation of
respiratory motor output, lasting many minutes to
hours. Phrenic LTF is a central neural mechanism
(162, 166) elicited by intermittent but not continuous
hypoxia (9). LTF requires spinal serotonin receptor
activation and spinal protein synthesis (10), enhancing
synaptic inputs to phrenic motoneurons (64). Network
(6, 117) and cellular/synaptic (8, 166) models of LTF
have been proposed. However, the persistent increase
in brain stem neurons following intermittent activa-
tion of carotid chemoafferent neurons (171–173) sug-
gests that multiple sites may be involved in this com-
plex form of respiratory neuroplasticity.

If intermittent hypoxia continues, different mecha-
nisms of plasticity are evoked. For example, chronic
intermittent hypoxia augments the short-term hyp-
oxic ventilatory response, eliminates posthypoxia fre-
quency decline, and amplifies LTF in rats (131). These
effects can be accounted for by enhanced central neural
integration of chemoafferent inputs (131), particularly
in the spinal cord (65). However, additional carotid
body plasticity may contribute to these effects (198).

Exercise-Induced Respiratory Plasticity (Adult)

Although the exercise ventilatory response is the
largest ventilatory response in our day-to-day lives,
our understanding of the primary drive to breathe
during exercise has advanced little in more than 50
years (82). On the other hand, we have recently gained
an appreciation that at least some degree of plasticity
can be observed in the exercise ventilatory response.
The exercise ventilatory response is enhanced by small
increments of respiratory dead space (i.e., hypercap-
nia) during mild to moderate exercise in goats and
humans (163, 192). This effect, known as short-term
modulation, requires the activation of serotonin recep-
tors (5) located in the spinal cord (164). If the animal
experiences hypercapnic exercise during one trial only,
subsequent exercise ventilatory responses revert to
normal (i.e., this is modulation). However, after re-
peated hypercapnic exercise, a form of respiratory plas-
ticity is observed as a persistent augmentation of
subsequent exercise ventilatory responses, an effect
originally referred to as long-term modulation (152,
157, 164). Long-term modulation in goats is serotonin-
dependent because it is blocked by pretreatment with
para-cholorphenylalanine, a serotonin depleter (103),
and may represent a consolidation of the mechanisms
that underlie short-term modulation. In humans, long-
term modulation (if it exists), is more subtle. Whereas
some report long-term modulation during the onset of
exercise in humans, no steady-state response is ob-
served (90, 202, 237). Other investigators have been
unable to find long-term modulation in humans (169),
although a less rigorous training protocol was used in
this study. The biological significance of short- and
long-term modulation of the exercise ventilatory re-
sponse remains unclear.

Another example of exercise-induced respiratory
plasticity is observed after chronic sensory denervation
of the thoracic spinal cord (157, 167). After thoracic
dorsal rhizotomy from T2 through T12, goats initially
exhibit severe ventilatory failure during even mild
exercise when wearing a respiratory mask, a mask
easily tolerated prior to surgery (167). In subsequent
exercise trials, functional recovery is observed, sug-
gesting that plasticity compensates for the loss of spi-
nal sensory feedback (167). Although the mechanism of
functional recovery is not clear, it is associated with
increased spinal serotonergic innervation and seroto-
nin concentration (165), suggesting a mechanism sim-
ilar to long-term modulation induced by repeated hy-
percapnic exercise (152).

Injury-Induced Respiratory Plasticity

Spinal cord injury. The mammalian spinal cord has
ineffective (“silent”) synaptic pathways that cross the
spinal midline to innervate contralateral phrenic mo-
toneurons (76, 77, 130). This crossed phrenic pathway
can be revealed in phrenic motor output below a spinal
hemisection. By cutting the phrenic nerve contralat-
eral to hemisection, descending respiratory drive is
increased, thereby recruiting the formerly ineffective
crossed phrenic pathway and restoring at least some
diaphragmatic activity (77, 83). With time, the crossed
spinal pathway increases in strength, allowing pro-
gressively greater recruitment of the formerly
paralyzed hemidiaphragm (74, 175). This form of
time-dependent plasticity following chronic spinal
hemisection has been called the “crossed phrenic phe-
nomenon” and is one of the longest known examples of
plasticity in respiratory motor control (83, 196). Spon-
taneous enhancement of crossed spinal pathways to
phrenic motoneurons is serotonin dependent (85, 86,
228). Similarly, depression of respiratory motor output
in the phrenic nerve contralateral to hemisection re-
quires serotonergic neurons (74). The crossed phrenic
pathway can be enhanced pharmacologically (130, 176,
248), by pretreatment with chronic cervical sensory
denervation (63) or by chronic intermittent hypoxia
following (but not prior to) chronic hemisection (65).
Respiratory plasticity elicited by spinal injury will be
the topic of a specialized review in this series (75a).

Spinal sensory denervation. Chronic thoracic dorsal
rhizotomy causes severe ventilatory failure during ex-
ercise in goats, followed by progressive functional re-
covery (157, 164, 167). This form of plasticity is asso-
ciated with increased spinal serotonin terminal density
and concentration, including effects in functionally re-
lated regions of the spinal cord not directly affected by
the surgery (165). Changes in spinal dopamine and
norepinephrine concentrations are also observed
within the surgically affected area (165), although the
functional significance of these changes is unknown. In
subsequent studies on rats, bilateral cervical dorsal
rhizotomy increased serotonin terminal density in the
phrenic motor nucleus and increased serotonin-depen-
dent LTF following intermittent hypoxia in both
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phrenic (120) and hypoglossal motor output (3). In
association, cervical dorsal rhizotomy increased ven-
tral spinal BDNF and neurotrophin-3 concentrations
(106) and crossed spinal synaptic pathways to phrenic
motoneurons (63). Thus spinal sensory denervation
elicits functional, morphological, and neurochemical
plasticity in respiratory motor control.

Chemosensory denervation. Chemosensory nerve
transection can elicit compensatory plasticity. For ex-
ample, carotid denervation upregulates the impact of
the aortic body chemoreceptors on ventilatory control
via a serotonin-dependent mechanism (54, 137, 216).
Carotid denervation also influences central neural che-
moreflex pathways (142, 143, 208, 209). Plasticity elic-
ited by neural injury or sensory denervation is consid-
ered in another review (53a, 54).

Serotonin-Dependent Respiratory Plasticity

Serotonin is a key element in several forms of respi-
ratory plasticity, particularly in adults (157). Specifi-
cally, serotonin plays a key role in respiratory plas-
ticity elicited by intermittent hypoxia (131, 166),
hypercapnic exercise (103), spinal sensory denervation
(120), chemoafferent denervation (216), spinal cord in-
jury (74, 85, 86), and long-lasting enhancement of re-
spiratory frequency (107).

Developmental Plasticity

The ventilatory control system exhibits developmen-
tal plasticity, whereby experiences in sensitive stages
of development alter adult ventilatory responses. The
same experiences have little or no impact when they
occur later in life, indicating that the plasticity is
unique to development. Such developmental plasticity
may be essential in guiding normal development of the
ventilatory control system. When these essential expe-
riences are altered, unique, potentially pathological
forms of plasticity may emerge.

Developmental hypoxia. Hypoxia during the neona-
tal period affects adult ventilatory control, altering
resting breathing patterns (182) and attenuating the
hypoxic ventilatory response (184). Furthermore, pre-
natal hypoxia (189) and postnatal hypoxia (108) impair
chemoafferent pathways in rats, an effect that is sex-
ually dimorphic (108). Brief associations of hypoxia
with auditory or tactile stimulation during the first
month of life have a lasting impact on ventilatory
patterns during sleep in adult rats (232, 233). Thus
early life experiences with hypoxia elicit developmen-
tal plasticity.

Developmental hyperoxia. Hyperoxia during the neo-
natal period also affects adult ventilatory control, sup-
pressing the normal development of arterial chemore-
ceptors (132, 133). For example, rats raised in enriched
oxygen mixtures for the first postnatal month have
impaired hypoxic ventilatory responses for the dura-
tion of life (62). The functional impairment is not due to
alterations in pulmonary mechanics or gas exchange
(135) or changes in the central integration of carotid
chemoafferent inputs (62, 134). Rather, carotid chemo-

receptor development is impaired because the carotid
bodies are hypoplastic (47, 66), the number of chemoaf-
ferent neurons in the carotid sinus nerve is reduced
(47), and carotid sinus nerve afferent responses to
cyanide, asphyxia, and hypoxia are reduced (20, 62,
133). The sensitive developmental period for these
changes is within the first 2 postnatal wk (15). Hyper-
oxia for the first postnatal week and month elicit sim-
ilar functional impairment (15). However, whereas
rats exposed to 1 wk of hyperoxia exhibit slow sponta-
neous functional recovery (16), rats exposed to 1 mo of
hyperoxia do not (62). Functional recovery can be
evoked in adults by chronic intermittent or chronic
sustained hypoxia, although the mechanisms underly-
ing functional recovery appear to differ (66). The bio-
logical or clinical significance of hyperoxia-induced de-
velopmental plasticity is unclear since the required
oxygen exposures are prolonged. Nonetheless, develop-
mental hyperoxia provides an intriguing model to
study developmental plasticity in ventilatory control
and may have some clinical relevance for hyperoxia
experienced in a neonatal intensive care unit.

Developmental hypercapnia. Developmental hyper-
capnia causes long-lasting attenuation in the acute
hypercapnic ventilatory response (205, 242), particu-
larly in females (14). Hypercapnia-induced develop-
mental plasticity may play a role in the reduced hyper-
capnic ventilatory responses commonly observed in
fossorial birds and mammals (22, 23, 57, 242).

Other examples. Other examples of developmental
plasticity include altered adult chemoreflexes caused
by maternal separation stress (118) and prenatal nic-
otine exposures (12, 51, 70, 87, 207). In the pond snail
Lymnaea stagnalis, preventing lung ventilation from
hatching through adulthood alters mechanisms of ven-
tilatory control in adults (92). Developmental plasticity
in ventilatory control will be discussed in other reviews
in this series (34a, 53a).

Activity-Dependent Respiratory Plasticity

Brief carotid sinus nerve stimulation in anesthetized
cats increases phrenic nerve activity during stimula-
tion and causes a persistent amplitude increase lasting
seconds to minutes poststimulation (i.e., short-term
potentiation; formerly “afterdischarge”) (46, 240).
Short-term potentiation is observed after hypoxia (197)
or other respiratory stimuli (46, 102) and can be ob-
served in multiple respiratory nerves (102). High-fre-
quency electrical stimulation of the lateral funiculus at
C1-C2 in anesthetized rats elicits increased phrenic
discharge for several minutes poststimulation (158),
possibly by NMDA-dependent mechanisms (105, 158).

High-frequency stimulation in the tractus solitarius
elicits LTD in synaptic inputs to neurons within the
nucleus of the solitary tract, an area of importance to
cardiorespiratory integration (194, 195, 249). However,
the synaptic pathways studied were not identified as
respiratory inputs. LTD is also elicited by low-fre-
quency (1–10 Hz) synaptic activation of descending
pathways to expiratory-related spinal motoneurons in
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in vitro turtle brain stem/spinal cord preparations
(105, 106). The physiological role of synaptic LTD in
the nucleus tractus solitarii or spinal cord is not
known.

To date, there are no clear examples of activity-
dependent LTP in any respiratory-related synaptic
pathway. Instead, there seems to be a bias toward
controlling synaptic strength via neuromodulator-in-
duced synaptic plasticity (105, 166). Because bursts of
high-frequency, glutamatergic synaptic activity are
commonly found in the respiratory control system,
activity-dependent LTP is inappropriate under normal
circumstances. However, this does not rule out an
ability to express LTP in certain conditions, such as
following spinal injury.

Hypercapnia-Induced Respiratory Plasticity (Adult)

Unlike hypoxia, hypercapnia is more often associ-
ated with long-lasting depression (vs. facilitation) of
respiratory motor output. During hypercapnia, respi-
ratory activity initially increases and then decreases
progressively as the hypercapnia is sustained (177).
Once the hypercapnia has ended, both sustained and
intermittent hypercapnia elicit long-term phrenic de-
pression in anesthetized rats (minutes to hours; Refs. 7
and 8). Hypercapnia-induced phrenic depression re-
quires !2-adrenergic receptor activation (7, 117).

Conditioning

The classical model of response conditioning was
established by Pavlov in his famous experiments on
dogs, associating a conditioned (irrelevant stimuli such
as a tone) with relevant unconditioned stimuli (e.g.,
food). The most widely studied example of a condi-
tioned respiratory reflex is the gill withdrawal reflex in
Aplysia. Kandel, Carew, and others (110) did pioneer-
ing work on this respiratory defense reflex, establish-
ing a model that has led to profound advances in our
understanding of synaptic plasticity in general, even-
tually leading to the recent award of a Nobel Prize
shared by Dr. Kandel. In the gill withdrawal reflex,
habituation, sensitization, and associative forms of
plasticity could be studied, first in the intact mollusk
and then in in vitro preparations where episodic sero-
tonin is used to initiate plasticity in the sensory motor
synapse (110). Another serotonin-dependent form of
associative learning in Aplysia is the sensitization of
gill movement in response to decreased pH after re-
peated, paired associations of low pH and an aversive
stimulus (126).

Operant conditioning is a form of associative learn-
ing where an external stimulus is associated with a
behavioral response (34); the external stimulus is pre-
sented only if and when an animal performs a partic-
ular behavior. In the fresh water snail, Lymnaea stag-
nalis, operant conditioning of aerial respiratory
behavior has been demonstrated (138, 229). When hy-
poxic, the animal rises to the air-water interface and
acquires oxygen from air via its pneumostome. Poking
the pneumostome during each attempted breath closes

the pneumostome and reduces future attempts at aer-
ial respiration (138). Operant conditioning of aerial
respiration in Lymnaea reduces the spontaneous activ-
ity of at least two interneurons within the respiratory
network, presumably decreasing the activation of the
neurons that initiate breathing attempts (221).

In one of the earliest experiments concerning condi-
tioning of respiratory behavior in mammals, hyperven-
tilation-induced apnea was produced in adult sheep for
which the unconditioned stimulus was an electric
shock (32). After thousands of training trials, environ-
mental cues related to the test apparatus became con-
ditioned stimuli, triggering further apneic events.
Adult ventilatory patterns during sleep can be condi-
tioned by neonatal experiences with tactile or auditory
stimuli paired with hypoxia (226, 232, 233). In adult
rats and cats, associations between a tone (conditioned
stimulus) and hypercapnia (179) or ammonia vapors
(185) (unconditioned stimuli) elicit conditioned venti-
latory inhibition. Recent reviews have considered the
evidence for classical conditioning of respiratory be-
haviors (67, 68, 127). Although the significance of re-
spiratory conditioning is unclear, it may be of rele-
vance to anxiety hyperventilation disorders.

CLOSING REMARKS

We have only recently begun to make progress in
understanding the manifestations, mechanisms, and
biological significance of neuroplasticity in respiratory
control. Specific areas to emphasize in future research
include a continued effort to identify new models of
respiratory plasticity, with a focus on the specific con-
ditions or experimental manipulations that trigger
plasticity. Such “descriptive” studies are still critical in
understanding the breadth of respiratory plasticity but
must be followed by detailed investigations of under-
lying mechanisms. At the cellular/synaptic level, an
important concern is to identify specific factors that
regulate the expression of plasticity (i.e., the necessary
preconditions). It is also important to understand the
biological significance of respiratory plasticity in every-
day life (e.g., weight gain, pregnancy), in individuals
compensating for the pathophysiology of disease and
injury, and in individuals with maladaptive plasticity
triggered by abnormal developmental cues. With gains
in understanding each of these levels, it may become
possible to harness plasticity as a therapeutic tool in
the treatment of respiratory pathophysiology, such as
lung disease, sleep-disordered breathing, sudden in-
fant death syndrome, and respiratory insufficiency fol-
lowing central nervous system injury.
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